Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.
نویسندگان
چکیده
BACKGROUND AND PURPOSE DNA damage and its repair mechanism are thought to be involved in ischemia/reperfusion injury in the brain. We have previously shown that apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pathway, rapidly decreased after transient focal cerebral ischemia (FCI) before the peak of DNA fragmentation. To further investigate the role of reactive oxygen species in APE/Ref-1 expression in vivo, we examined the expression of APE/Ref-1 and DNA damage after FCI in wild-type and transgenic mice overexpressing copper-zinc superoxide dismutase. METHODS Transgenic mice overexpressing copper-zinc superoxide dismutase and wild-type littermates were subjected to 60 minutes of transient FCI by intraluminal blockade of the middle cerebral artery. APE/Ref-1 protein expression was analyzed by immunohistochemistry and Western blot analysis. DNA damage was evaluated by gel electrophoresis and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL). RESULTS A similar level of APE/Ref-1 was detected in the control brains from both groups. APE/Ref-1 was significantly reduced 1 hour after transient FCI in both groups, whereas the transgenic mice had less reduction than that seen in wild-type mice 1 and 4 hours after FCI. DNA laddering was detected 24 hours after FCI and was decreased in transgenic mice. Double staining with APE/Ref-1 and TUNEL showed that the neurons that lost APE/Ref-1 immunoreactivity became TUNEL positive. CONCLUSIONS These results suggest that reactive oxygen species contribute to the early decrease of APE/Ref-1 and thereby exacerbate DNA fragmentation after transient FCI in mice.
منابع مشابه
Copper-zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE The serine-threonine kinase Akt is activated by phosphorylation at serine-473. After phosphorylation, activated Akt inactivates BAD or caspase-9 or other apoptogenic components, thereby inhibiting cell death. In this study we examined the relationship between Akt phosphorylation and oxidative stress after transient focal cerebral ischemia (FCI) using copper-zinc superoxid...
متن کاملThe cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice.
Release of mitochondrial cytochrome c into the cytosol is a critical step in apoptosis. We have reported that early release of cytochrome c in vivo occurs after permanent focal cerebral ischemia (FCI) and is mediated by the mitochondrial antioxidant manganese superoxide dismutase (SOD). However, the role of reactive oxygen species produced after ischemia-reperfusion in the mitochondrial apoptos...
متن کاملOverexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) have been implicated in reperfusion injury after focal cerebral ischemia (FCI). ROS are known to regulate the activity of transcription factors such as activator protein-1 (AP-1), which is a dimer consisting of members of the Jun and Fos families. We investigated the role of ROS in AP-1 activity after FCI using transgenic mice that overexpres...
متن کاملSuperoxide during reperfusion contributes to caspase-8 expression and apoptosis after transient focal stroke.
BACKGROUND AND PURPOSE Reactive oxygen species produced during reperfusion may play a detrimental role in focal cerebral ischemia (FCI). We examined the protein expression of caspase-8, which plays a major role in both Fas-dependent and cytochrome c-dependent apoptotic pathways after FCI with or without reperfusion. Caspase-8 expression after transient FCI was compared between wild-type and tra...
متن کاملCopper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice.
Recent studies have revealed that activation of extracellular signal-regulated kinase (ERK) may contribute to apoptosis, a cell death process involved in oxidative stress. We examined phosphorylation of ERK1/2 and oxidative stress after transient focal cerebral ischemia (FCI) using transgenic (Tg) mice that overexpress copper/zinc superoxide dismutase (SOD1). The mice were subjected to 60 min o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 30 11 شماره
صفحات -
تاریخ انتشار 1999